Best On-Premises Large Language Models of 2025 - Page 4

Find and compare the best On-Premises Large Language Models in 2025

Use the comparison tool below to compare the top On-Premises Large Language Models on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Medical LLM Reviews
    John Snow Labs has developed a sophisticated large language model (LLM) specifically for the medical field, aimed at transforming how healthcare organizations utilize artificial intelligence. This groundbreaking platform is designed exclusively for healthcare professionals, merging state-of-the-art natural language processing (NLP) abilities with an in-depth comprehension of medical language, clinical processes, and compliance standards. Consequently, it serves as an essential resource that empowers healthcare providers, researchers, and administrators to gain valuable insights, enhance patient care, and increase operational effectiveness. Central to the Healthcare LLM is its extensive training on a diverse array of healthcare-related materials, which includes clinical notes, academic research, and regulatory texts. This targeted training equips the model to proficiently understand and produce medical language, making it a crucial tool for various applications such as clinical documentation, automated coding processes, and medical research initiatives. Furthermore, its capabilities extend to streamlining workflows, thereby allowing healthcare professionals to focus more on patient care rather than administrative tasks.
  • 2
    Pixtral Large Reviews
    Pixtral Large is an expansive multimodal model featuring 124 billion parameters, crafted by Mistral AI and enhancing their previous Mistral Large 2 framework. This model combines a 123-billion-parameter multimodal decoder with a 1-billion-parameter vision encoder, allowing it to excel in the interpretation of various content types, including documents, charts, and natural images, all while retaining superior text comprehension abilities. With the capability to manage a context window of 128,000 tokens, Pixtral Large can efficiently analyze at least 30 high-resolution images at once. It has achieved remarkable results on benchmarks like MathVista, DocVQA, and VQAv2, outpacing competitors such as GPT-4o and Gemini-1.5 Pro. Available for research and educational purposes under the Mistral Research License, it also has a Mistral Commercial License for business applications. This versatility makes Pixtral Large a valuable tool for both academic research and commercial innovations.
  • 3
    Liquid AI Reviews
    At Liquid, we aim to develop highly advanced AI systems that can address challenges of varying magnitudes, enabling users to construct, utilize, and manage their own AI solutions effectively. This commitment is designed to guarantee that AI is seamlessly, dependably, and efficiently incorporated across all businesses. In the long run, Liquid aspires to produce and implement cutting-edge AI solutions that are accessible to all individuals. Our approach involves creating transparent models within an organization that values openness and clarity. Ultimately, we believe that this transparency fosters trust and innovation in the AI landscape.
  • 4
    Qwen2.5-1M Reviews
    Qwen2.5-1M, an open-source language model from the Qwen team, has been meticulously crafted to manage context lengths reaching as high as one million tokens. This version introduces two distinct model variants, namely Qwen2.5-7B-Instruct-1M and Qwen2.5-14B-Instruct-1M, representing a significant advancement as it is the first instance of Qwen models being enhanced to accommodate such large context lengths. In addition to this, the team has released an inference framework that is based on vLLM and incorporates sparse attention mechanisms, which greatly enhance the processing speed for 1M-token inputs, achieving improvements between three to seven times. A detailed technical report accompanies this release, providing in-depth insights into the design choices and the results from various ablation studies. This transparency allows users to fully understand the capabilities and underlying technology of the models.
  • 5
    DeepSeek R2 Reviews
    DeepSeek R2 is the highly awaited successor to DeepSeek R1, an innovative AI reasoning model that made waves when it was introduced in January 2025 by the Chinese startup DeepSeek. This new version builds on the remarkable achievements of R1, which significantly altered the AI landscape by providing cost-effective performance comparable to leading models like OpenAI’s o1. R2 is set to offer a substantial upgrade in capabilities, promising impressive speed and reasoning abilities akin to that of a human, particularly in challenging areas such as complex coding and advanced mathematics. By utilizing DeepSeek’s cutting-edge Mixture-of-Experts architecture along with optimized training techniques, R2 is designed to surpass the performance of its predecessor while keeping computational demands low. Additionally, there are expectations that this model may broaden its reasoning skills to accommodate languages beyond just English, potentially increasing its global usability. The anticipation surrounding R2 highlights the ongoing evolution of AI technology and its implications for various industries.
  • 6
    BitNet Reviews

    BitNet

    Microsoft

    Free
    Microsoft’s BitNet b1.58 2B4T is a breakthrough in AI with its native 1-bit LLM architecture. This model has been optimized for computational efficiency, offering significant reductions in memory, energy, and latency while still achieving high performance on various AI benchmarks. It supports a range of natural language processing tasks, making it an ideal solution for scalable and cost-effective AI implementations in industries requiring fast, energy-efficient inference and robust language capabilities.
  • 7
    GigaChat 3 Ultra Reviews
    GigaChat 3 Ultra redefines open-source scale by delivering a 702B-parameter frontier model purpose-built for Russian and multilingual understanding. Designed with a modern MoE architecture, it achieves the reasoning strength of giant dense models while using only a fraction of active parameters per generation step. Its massive 14T-token training corpus includes natural human text, curated multilingual sources, extensive STEM materials, and billions of high-quality synthetic examples crafted to boost logic, math, and programming skills. This model is not a derivative or retrained foreign LLM—it is a ground-up build engineered to capture cultural nuance, linguistic accuracy, and reliable long-context performance. GigaChat 3 Ultra integrates seamlessly with open-source tooling like vLLM, sglang, DeepSeek-class architectures, and HuggingFace-based training stacks. It supports advanced capabilities including a code interpreter, improved chat template, memory system, contextual search reformulation, and 128K context windows. Benchmarking shows clear improvements over previous GigaChat generations and competitive results against global leaders in coding, reasoning, and cross-domain tasks. Overall, GigaChat 3 Ultra empowers teams to explore frontier-scale AI without sacrificing transparency, customizability, or ecosystem compatibility.
  • 8
    PaLM Reviews
    The PaLM API offers a straightforward and secure method for leveraging our most advanced language models. We are excited to announce the release of a highly efficient model that balances size and performance, with plans to introduce additional model sizes in the near future. Accompanying this API is MakerSuite, an easy-to-use tool designed for rapid prototyping of ideas, which will eventually include features for prompt engineering, synthetic data creation, and custom model adjustments, all backed by strong safety measures. Currently, a select group of developers can access the PaLM API and MakerSuite in Private Preview, and we encourage everyone to keep an eye out for our upcoming waitlist. This initiative represents a significant step forward in empowering developers to innovate with language models.
  • 9
    PaLM 2 Reviews
    PaLM 2 represents the latest evolution in large language models, continuing Google's tradition of pioneering advancements in machine learning and ethical AI practices. It demonstrates exceptional capabilities in complex reasoning activities such as coding, mathematics, classification, answering questions, translation across languages, and generating natural language, surpassing the performance of previous models, including its predecessor PaLM. This enhanced performance is attributed to its innovative construction, which combines optimal computing scalability, a refined mixture of datasets, and enhancements in model architecture. Furthermore, PaLM 2 aligns with Google's commitment to responsible AI development and deployment, having undergone extensive assessments to identify potential harms, biases, and practical applications in both research and commercial products. This model serves as a foundation for other cutting-edge applications, including Med-PaLM 2 and Sec-PaLM, while also powering advanced AI features and tools at Google, such as Bard and the PaLM API. Additionally, its versatility makes it a significant asset in various fields, showcasing the potential of AI to enhance productivity and innovation.
  • 10
    Smaug-72B Reviews
    Smaug-72B is a formidable open-source large language model (LLM) distinguished by several prominent features: Exceptional Performance: It currently ranks first on the Hugging Face Open LLM leaderboard, outperforming models such as GPT-3.5 in multiple evaluations, demonstrating its ability to comprehend, react to, and generate text that closely resembles human writing. Open Source Availability: In contrast to many high-end LLMs, Smaug-72B is accessible to everyone for use and modification, which encourages cooperation and innovation within the AI ecosystem. Emphasis on Reasoning and Mathematics: This model excels particularly in reasoning and mathematical challenges, a capability attributed to specialized fine-tuning methods developed by its creators, Abacus AI. Derived from Qwen-72B: It is essentially a refined version of another robust LLM, Qwen-72B, which was launched by Alibaba, thereby enhancing its overall performance. In summary, Smaug-72B marks a notable advancement in the realm of open-source artificial intelligence, making it a valuable resource for developers and researchers alike. Its unique strengths not only elevate its status but also contribute to the ongoing evolution of AI technology.
  • 11
    Jamba Reviews
    Jamba stands out as the most potent and effective long context model, specifically designed for builders while catering to enterprise needs. With superior latency compared to other leading models of similar sizes, Jamba boasts a remarkable 256k context window, the longest that is openly accessible. Its innovative Mamba-Transformer MoE architecture focuses on maximizing cost-effectiveness and efficiency. Key features available out of the box include function calls, JSON mode output, document objects, and citation mode, all designed to enhance user experience. Jamba 1.5 models deliver exceptional performance throughout their extensive context window and consistently achieve high scores on various quality benchmarks. Enterprises can benefit from secure deployment options tailored to their unique requirements, allowing for seamless integration into existing systems. Jamba can be easily accessed on our robust SaaS platform, while deployment options extend to strategic partners, ensuring flexibility for users. For organizations with specialized needs, we provide dedicated management and continuous pre-training, ensuring that every client can leverage Jamba’s capabilities to the fullest. This adaptability makes Jamba a prime choice for enterprises looking for cutting-edge solutions.
  • 12
    Amazon Nova Reviews
    Amazon Nova represents an advanced generation of foundation models (FMs) that offer cutting-edge intelligence and exceptional price-performance ratios, and it is exclusively accessible through Amazon Bedrock. The lineup includes three distinct models: Amazon Nova Micro, Amazon Nova Lite, and Amazon Nova Pro, each designed to process inputs in text, image, or video form and produce text-based outputs. These models cater to various operational needs, providing diverse options in terms of capability, accuracy, speed, and cost efficiency. Specifically, Amazon Nova Micro is tailored for text-only applications, ensuring the quickest response times at minimal expense. In contrast, Amazon Nova Lite serves as a budget-friendly multimodal solution that excels at swiftly handling image, video, and text inputs. On the other hand, Amazon Nova Pro boasts superior capabilities, offering an optimal blend of accuracy, speed, and cost-effectiveness suitable for an array of tasks, including video summarization, Q&A, and mathematical computations. With its exceptional performance and affordability, Amazon Nova Pro stands out as an attractive choice for nearly any application.
  • 13
    GLM-4.6 Reviews
    GLM-4.6 builds upon the foundations laid by its predecessor, showcasing enhanced reasoning, coding, and agent capabilities, resulting in notable advancements in inferential accuracy, improved tool usage during reasoning tasks, and a more seamless integration within agent frameworks. In comprehensive benchmark evaluations that assess reasoning, coding, and agent performance, GLM-4.6 surpasses GLM-4.5 and competes robustly against other models like DeepSeek-V3.2-Exp and Claude Sonnet 4, although it still lags behind Claude Sonnet 4.5 in terms of coding capabilities. Furthermore, when subjected to practical tests utilizing an extensive “CC-Bench” suite that includes tasks in front-end development, tool creation, data analysis, and algorithmic challenges, GLM-4.6 outperforms GLM-4.5 while nearing parity with Claude Sonnet 4, achieving victory in approximately 48.6% of direct comparisons and demonstrating around 15% improved token efficiency. This latest model is accessible through the Z.ai API, providing developers the flexibility to implement it as either an LLM backend or as the core of an agent within the platform's API ecosystem. In addition, its advancements could significantly enhance productivity in various application domains, making it an attractive option for developers looking to leverage cutting-edge AI technology.
  • 14
    BLOOM Reviews
    BLOOM is a sophisticated autoregressive language model designed to extend text based on given prompts, leveraging extensive text data and significant computational power. This capability allows it to generate coherent and contextually relevant content in 46 different languages, along with 13 programming languages, often making it difficult to differentiate its output from that of a human author. Furthermore, BLOOM's versatility enables it to tackle various text-related challenges, even those it has not been specifically trained on, by interpreting them as tasks of text generation. Its adaptability makes it a valuable tool for a range of applications across multiple domains.
  • 15
    ERNIE 3.0 Titan Reviews
    Pre-trained language models have made significant strides, achieving top-tier performance across multiple Natural Language Processing (NLP) applications. The impressive capabilities of GPT-3 highlight how increasing the scale of these models can unlock their vast potential. Recently, a comprehensive framework known as ERNIE 3.0 was introduced to pre-train large-scale models enriched with knowledge, culminating in a model boasting 10 billion parameters. This iteration of ERNIE 3.0 has surpassed the performance of existing leading models in a variety of NLP tasks. To further assess the effects of scaling, we have developed an even larger model called ERNIE 3.0 Titan, which consists of up to 260 billion parameters and is built on the PaddlePaddle platform. Additionally, we have implemented a self-supervised adversarial loss alongside a controllable language modeling loss, enabling ERNIE 3.0 Titan to produce texts that are both reliable and modifiable, thus pushing the boundaries of what these models can achieve. This approach not only enhances the model's capabilities but also opens new avenues for research in text generation and control.
  • 16
    EXAONE Reviews
    EXAONE is an advanced language model created by LG AI Research, designed to cultivate "Expert AI" across various fields. To enhance EXAONE's capabilities, the Expert AI Alliance was established, bringing together prominent companies from diverse sectors to collaborate. These partner organizations will act as mentors, sharing their expertise, skills, and data to support EXAONE in becoming proficient in specific domains. Much like a college student who has finished general courses, EXAONE requires further focused training to achieve true expertise. LG AI Research has already showcased EXAONE's potential through practical implementations, including Tilda, an AI human artist that made its debut at New York Fashion Week, and AI tools that summarize customer service interactions as well as extract insights from intricate academic papers. This initiative not only highlights the innovative applications of AI but also emphasizes the importance of collaborative efforts in advancing technology.
  • 17
    Jurassic-1 Reviews
    Jurassic-1 offers two model sizes, with the Jumbo variant being the largest at 178 billion parameters, representing the pinnacle of complexity in language models released for developers. Currently, AI21 Studio is in an open beta phase, inviting users to register and begin exploring Jurassic-1 through an accessible API and an interactive web platform. At AI21 Labs, our goal is to revolutionize how people engage with reading and writing by integrating machines as cognitive collaborators, a vision that requires collective effort to realize. Our exploration of language models dates back to what we refer to as our Mesozoic Era (2017 😉). Building upon this foundational research, Jurassic-1 marks the inaugural series of models we are now offering for broad public application. As we move forward, we are excited to see how users will leverage these advancements in their own creative processes.
  • 18
    LTM-1 Reviews
    Magic’s LTM-1 technology facilitates context windows that are 50 times larger than those typically used in transformer models. As a result, Magic has developed a Large Language Model (LLM) that can effectively process vast amounts of contextual information when providing suggestions. This advancement allows our coding assistant to access and analyze your complete code repository. With the ability to reference extensive factual details and their own prior actions, larger context windows can significantly enhance the reliability and coherence of AI outputs. We are excited about the potential of this research to further improve user experience in coding assistance applications.
  • 19
    Reka Reviews
    Our advanced multimodal assistant is meticulously crafted with a focus on privacy, security, and operational efficiency. Yasa is trained to interpret various forms of content, including text, images, videos, and tabular data, with plans to expand to additional modalities in the future. It can assist you in brainstorming for creative projects, answering fundamental questions, or extracting valuable insights from your internal datasets. With just a few straightforward commands, you can generate, train, compress, or deploy it on your own servers. Our proprietary algorithms enable you to customize the model according to your specific data and requirements. We utilize innovative techniques that encompass retrieval, fine-tuning, self-supervised instruction tuning, and reinforcement learning to optimize our model based on your unique datasets, ensuring that it meets your operational needs effectively. In doing so, we aim to enhance user experience and deliver tailored solutions that drive productivity and innovation.
  • 20
    Aya Reviews
    Aya represents a cutting-edge, open-source generative language model that boasts support for 101 languages, significantly surpassing the language capabilities of current open-source counterparts. By facilitating access to advanced language processing for a diverse array of languages and cultures that are often overlooked, Aya empowers researchers to explore the full potential of generative language models. In addition to the Aya model, we are releasing the largest dataset for multilingual instruction fine-tuning ever created, which includes 513 million entries across 114 languages. This extensive dataset features unique annotations provided by native and fluent speakers worldwide, thereby enhancing the ability of AI to cater to a wide range of global communities that have historically had limited access to such technology. Furthermore, the initiative aims to bridge the gap in AI accessibility, ensuring that even the most underserved languages receive the attention they deserve in the digital landscape.
  • 21
    Tune AI Reviews
    Harness the capabilities of tailored models to gain a strategic edge in your market. With our advanced enterprise Gen AI framework, you can surpass conventional limits and delegate repetitive tasks to robust assistants in real time – the possibilities are endless. For businesses that prioritize data protection, customize and implement generative AI solutions within your own secure cloud environment, ensuring safety and confidentiality at every step.
  • 22
    Defense Llama Reviews
    Scale AI is excited to introduce Defense Llama, a specialized Large Language Model (LLM) developed from Meta’s Llama 3, tailored specifically to enhance American national security initiatives. Designed for exclusive use within controlled U.S. government settings through Scale Donovan, Defense Llama equips our military personnel and national security experts with the generative AI tools needed for various applications, including the planning of military operations and the analysis of adversary weaknesses. With its training grounded in a comprehensive array of materials, including military doctrines and international humanitarian laws, Defense Llama adheres to the Department of Defense (DoD) guidelines on armed conflict and aligns with the DoD’s Ethical Principles for Artificial Intelligence. This structured foundation allows the model to deliver precise, relevant, and insightful responses tailored to the needs of its users. By providing a secure and efficient generative AI platform, Scale is committed to enhancing the capabilities of U.S. defense personnel in their critical missions. The integration of such technology marks a significant advancement in how national security objectives can be achieved.
  • 23
    Hunyuan-TurboS Reviews
    Tencent's Hunyuan-TurboS represents a cutting-edge AI model crafted to deliver swift answers and exceptional capabilities across multiple fields, including knowledge acquisition, mathematical reasoning, and creative endeavors. Departing from earlier models that relied on "slow thinking," this innovative system significantly boosts response rates, achieving a twofold increase in word output speed and cutting down first-word latency by 44%. With its state-of-the-art architecture, Hunyuan-TurboS not only enhances performance but also reduces deployment expenses. The model skillfully integrates fast thinking—prompt, intuition-driven responses—with slow thinking—methodical logical analysis—ensuring timely and precise solutions in a wide array of situations. Its remarkable abilities are showcased in various benchmarks, positioning it competitively alongside other top AI models such as GPT-4 and DeepSeek V3, thus marking a significant advancement in AI performance. As a result, Hunyuan-TurboS is poised to redefine expectations in the realm of artificial intelligence applications.
  • 24
    Llama Reviews
    Llama (Large Language Model Meta AI) stands as a cutting-edge foundational large language model aimed at helping researchers push the boundaries of their work within this area of artificial intelligence. By providing smaller yet highly effective models like Llama, the research community can benefit even if they lack extensive infrastructure, thus promoting greater accessibility in this dynamic and rapidly evolving domain. Creating smaller foundational models such as Llama is advantageous in the landscape of large language models, as it demands significantly reduced computational power and resources, facilitating the testing of innovative methods, confirming existing research, and investigating new applications. These foundational models leverage extensive unlabeled datasets, making them exceptionally suitable for fine-tuning across a range of tasks. We are offering Llama in multiple sizes (7B, 13B, 33B, and 65B parameters), accompanied by a detailed Llama model card that outlines our development process while adhering to our commitment to Responsible AI principles. By making these resources available, we aim to empower a broader segment of the research community to engage with and contribute to advancements in AI.
  • 25
    OPT Reviews
    Large language models, often requiring extensive computational resources for training over long periods, have demonstrated impressive proficiency in zero- and few-shot learning tasks. Due to the high investment needed for their development, replicating these models poses a significant challenge for many researchers. Furthermore, access to the few models available via API is limited, as users cannot obtain the complete model weights, complicating academic exploration. In response to this, we introduce Open Pre-trained Transformers (OPT), a collection of decoder-only pre-trained transformers ranging from 125 million to 175 billion parameters, which we intend to share comprehensively and responsibly with interested scholars. Our findings indicate that OPT-175B exhibits performance on par with GPT-3, yet it is developed with only one-seventh of the carbon emissions required for GPT-3's training. Additionally, we will provide a detailed logbook that outlines the infrastructure hurdles we encountered throughout the project, as well as code to facilitate experimentation with all released models, ensuring that researchers have the tools they need to explore this technology further.