Best On-Premises Large Language Models of 2025 - Page 3

Find and compare the best On-Premises Large Language Models in 2025

Use the comparison tool below to compare the top On-Premises Large Language Models on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Falcon 3 Reviews

    Falcon 3

    Technology Innovation Institute (TII)

    Free
    Falcon 3 is a large language model that has been made open-source by the Technology Innovation Institute (TII), aiming to broaden access to advanced AI capabilities. Its design prioritizes efficiency, enabling it to function effectively on lightweight devices like laptops while maintaining high performance levels. The Falcon 3 suite includes four scalable models, each specifically designed for various applications and capable of supporting multiple languages while minimizing resource consumption. This new release in TII's LLM lineup sets a benchmark in reasoning, language comprehension, instruction adherence, coding, and mathematical problem-solving. By offering a blend of robust performance and resource efficiency, Falcon 3 seeks to democratize AI access, allowing users in numerous fields to harness sophisticated technology without the necessity for heavy computational power. Furthermore, this initiative not only enhances individual capabilities but also fosters innovation across different sectors by making advanced AI tools readily available.
  • 2
    Qwen2.5-VL Reviews
    Qwen2.5-VL marks the latest iteration in the Qwen vision-language model series, showcasing notable improvements compared to its predecessor, Qwen2-VL. This advanced model demonstrates exceptional capabilities in visual comprehension, adept at identifying a diverse range of objects such as text, charts, and various graphical elements within images. Functioning as an interactive visual agent, it can reason and effectively manipulate tools, making it suitable for applications involving both computer and mobile device interactions. Furthermore, Qwen2.5-VL is proficient in analyzing videos that are longer than one hour, enabling it to identify pertinent segments within those videos. The model also excels at accurately locating objects in images by creating bounding boxes or point annotations and supplies well-structured JSON outputs for coordinates and attributes. It provides structured data outputs for documents like scanned invoices, forms, and tables, which is particularly advantageous for industries such as finance and commerce. Offered in both base and instruct configurations across 3B, 7B, and 72B models, Qwen2.5-VL can be found on platforms like Hugging Face and ModelScope, further enhancing its accessibility for developers and researchers alike. This model not only elevates the capabilities of vision-language processing but also sets a new standard for future developments in the field.
  • 3
    R1 1776 Reviews

    R1 1776

    Perplexity AI

    Free
    Perplexity AI has released R1 1776 as an open-source large language model (LLM), built on the DeepSeek R1 framework, with the goal of improving transparency and encouraging collaborative efforts in the field of AI development. With this release, researchers and developers can explore the model's architecture and underlying code, providing them the opportunity to enhance and tailor it for diverse use cases. By making R1 1776 available to the public, Perplexity AI seeks to drive innovation while upholding ethical standards in the AI sector. This initiative not only empowers the community but also fosters a culture of shared knowledge and responsibility among AI practitioners.
  • 4
    QwQ-Max-Preview Reviews
    QwQ-Max-Preview is a cutting-edge AI model based on the Qwen2.5-Max framework, specifically engineered to excel in areas such as complex reasoning, mathematical problem-solving, programming, and agent tasks. This preview showcases its enhanced capabilities across a variety of general-domain applications while demonstrating proficiency in managing intricate workflows. Anticipated to be officially released as open-source software under the Apache 2.0 license, QwQ-Max-Preview promises significant improvements and upgrades in its final iteration. Additionally, it contributes to the development of a more inclusive AI environment, as evidenced by the forthcoming introduction of the Qwen Chat application and streamlined model versions like QwQ-32B, which cater to developers interested in local deployment solutions. This initiative not only broadens accessibility but also encourages innovation within the AI community.
  • 5
    Mistral Large 2 Reviews
    Mistral AI has introduced the Mistral Large 2, a sophisticated AI model crafted to excel in various domains such as code generation, multilingual understanding, and intricate reasoning tasks. With an impressive 128k context window, this model accommodates a wide array of languages, including English, French, Spanish, and Arabic, while also supporting an extensive list of over 80 programming languages. Designed for high-throughput single-node inference, Mistral Large 2 is perfectly suited for applications requiring large context handling. Its superior performance on benchmarks like MMLU, coupled with improved capabilities in code generation and reasoning, guarantees both accuracy and efficiency in results. Additionally, the model features enhanced function calling and retrieval mechanisms, which are particularly beneficial for complex business applications. This makes Mistral Large 2 not only versatile but also a powerful tool for developers and businesses looking to leverage advanced AI capabilities.
  • 6
    Llama 4 Behemoth Reviews
    Llama 4 Behemoth, with 288 billion active parameters, is Meta's flagship AI model, setting new standards for multimodal performance. Outpacing its predecessors like GPT-4.5 and Claude Sonnet 3.7, it leads the field in STEM benchmarks, offering cutting-edge results in tasks such as problem-solving and reasoning. Designed as the teacher model for the Llama 4 series, Behemoth drives significant improvements in model quality and efficiency through distillation. Although still in development, Llama 4 Behemoth is shaping the future of AI with its unparalleled intelligence, particularly in math, image, and multilingual tasks.
  • 7
    Llama 4 Maverick Reviews
    Llama 4 Maverick is a cutting-edge multimodal AI model with 17 billion active parameters and 128 experts, setting a new standard for efficiency and performance. It excels in diverse domains, outperforming other models such as GPT-4o and Gemini 2.0 Flash in coding, reasoning, and image-related tasks. Llama 4 Maverick integrates both text and image processing seamlessly, offering enhanced capabilities for complex tasks such as visual question answering, content generation, and problem-solving. The model’s performance-to-cost ratio makes it an ideal choice for businesses looking to integrate powerful AI into their operations without the hefty resource demands.
  • 8
    Llama 4 Scout Reviews
    Llama 4 Scout is an advanced multimodal AI model with 17 billion active parameters, offering industry-leading performance with a 10 million token context length. This enables it to handle complex tasks like multi-document summarization and detailed code reasoning with impressive accuracy. Scout surpasses previous Llama models in both text and image understanding, making it an excellent choice for applications that require a combination of language processing and image analysis. Its powerful capabilities in long-context tasks and image-grounding applications set it apart from other models in its class, providing superior results for a wide range of industries.
  • 9
    Qwen3 Reviews
    Qwen3 is a state-of-the-art large language model designed to revolutionize the way we interact with AI. Featuring both thinking and non-thinking modes, Qwen3 allows users to customize its response style, ensuring optimal performance for both complex reasoning tasks and quick inquiries. With the ability to support 119 languages, the model is suitable for international projects. The model's hybrid training approach, which involves over 36 trillion tokens, ensures accuracy across a variety of disciplines, from coding to STEM problems. Its integration with platforms such as Hugging Face, ModelScope, and Kaggle allows for easy adoption in both research and production environments. By enhancing multilingual support and incorporating advanced AI techniques, Qwen3 is designed to push the boundaries of AI-driven applications.
  • 10
    Mistral Medium 3 Reviews
    Mistral Medium 3 is an innovative AI model designed to offer high performance at a significantly lower cost, making it an attractive solution for enterprises. It integrates seamlessly with both on-premises and cloud environments, supporting hybrid deployments for more flexibility. This model stands out in professional use cases such as coding, STEM tasks, and multimodal understanding, where it achieves near-competitive results against larger, more expensive models. Additionally, Mistral Medium 3 allows businesses to deploy custom post-training and integrate it into existing systems, making it adaptable to various industry needs. With its impressive performance in coding tasks and real-world human evaluations, Mistral Medium 3 is a cost-effective solution that enables companies to implement AI into their workflows. Its enterprise-focused features, including continuous pretraining and domain-specific fine-tuning, make it a reliable tool for sectors like healthcare, financial services, and energy.
  • 11
    NuExtract Reviews

    NuExtract

    NuExtract

    $5 per 1M tokens
    NuExtract is an advanced tool designed for extracting structured data from various document formats, such as text files, scanned images, PDFs, PowerPoints, spreadsheets, among others, while accommodating multiple languages and mixed-language inputs. It generates output in JSON format that adheres to user-specified templates, incorporating verification and handling of null values to reduce inaccuracies. Users can initiate extraction tasks by crafting a template through either specifying the fields they want or importing existing formats; they can enhance precision by including example documents and expected outputs in the example set. The NuExtract Platform boasts a user-friendly interface for template creation, extraction testing in a sandbox environment, managing teaching examples, and adjusting parameters like model temperature and document rasterization DPI. After completion of validation, projects can be executed through a RESTful API endpoint, enabling real-time processing of documents. This seamless integration allows users to efficiently manage their data extraction needs, enhancing both productivity and accuracy in their workflows.
  • 12
    DeepSeek-V3.2-Exp Reviews
    Introducing DeepSeek-V3.2-Exp, our newest experimental model derived from V3.1-Terminus, featuring the innovative DeepSeek Sparse Attention (DSA) that enhances both training and inference speed for lengthy contexts. This DSA mechanism allows for precise sparse attention while maintaining output quality, leading to improved performance for tasks involving long contexts and a decrease in computational expenses. Benchmark tests reveal that V3.2-Exp matches the performance of V3.1-Terminus while achieving these efficiency improvements. The model is now fully operational across app, web, and API platforms. Additionally, to enhance accessibility, we have slashed DeepSeek API prices by over 50% effective immediately. During a transition period, users can still utilize V3.1-Terminus via a temporary API endpoint until October 15, 2025. DeepSeek encourages users to share their insights regarding DSA through our feedback portal. Complementing the launch, DeepSeek-V3.2-Exp has been made open-source, with model weights and essential technology—including crucial GPU kernels in TileLang and CUDA—accessible on Hugging Face. We look forward to seeing how the community engages with this advancement.
  • 13
    DeepSeek-V3.2 Reviews
    DeepSeek-V3.2 is a highly optimized large language model engineered to balance top-tier reasoning performance with significant computational efficiency. It builds on DeepSeek's innovations by introducing DeepSeek Sparse Attention (DSA), a custom attention algorithm that reduces complexity and excels in long-context environments. The model is trained using a sophisticated reinforcement learning approach that scales post-training compute, enabling it to perform on par with GPT-5 and match the reasoning skill of Gemini-3.0-Pro. Its Speciale variant overachieves in demanding reasoning benchmarks and does not include tool-calling capabilities, making it ideal for deep problem-solving tasks. DeepSeek-V3.2 is also trained using an agentic synthesis pipeline that creates high-quality, multi-step interactive data to improve decision-making, compliance, and tool-integration skills. It introduces a new chat template design featuring explicit thinking sections, improved tool-calling syntax, and a dedicated developer role used strictly for search-agent workflows. Users can encode messages using provided Python utilities that convert OpenAI-style chat messages into the expected DeepSeek format. Fully open-source under the MIT license, DeepSeek-V3.2 is a flexible, cutting-edge model for researchers, developers, and enterprise AI teams.
  • 14
    DeepSeek-V3.2-Speciale Reviews
    DeepSeek-V3.2-Speciale is the most advanced reasoning-focused version of the DeepSeek-V3.2 family, designed to excel in mathematical, algorithmic, and logic-intensive tasks. It incorporates DeepSeek Sparse Attention (DSA), an efficient attention mechanism tailored for very long contexts, enabling scalable reasoning with minimal compute costs. The model undergoes a robust reinforcement learning pipeline that scales post-training compute to frontier levels, enabling performance that exceeds GPT-5 on internal evaluations. Its achievements include gold-medal-level solutions in IMO 2025, IOI 2025, ICPC World Finals, and CMO 2025, with final submissions publicly released for verification. Unlike the standard V3.2 model, the Speciale variant removes tool-calling capabilities to maximize focused reasoning output without external interactions. DeepSeek-V3.2-Speciale uses a revised chat template with explicit thinking blocks and system-level reasoning formatting. The repository includes encoding tools showing how to convert OpenAI-style chat messages into DeepSeek’s specialized input format. With its MIT license and 685B-parameter architecture, DeepSeek-V3.2-Speciale offers cutting-edge performance for academic research, competitive programming, and enterprise-level reasoning applications.
  • 15
    DeepScaleR Reviews

    DeepScaleR

    Agentica Project

    Free
    DeepScaleR is a sophisticated language model comprising 1.5 billion parameters, refined from DeepSeek-R1-Distilled-Qwen-1.5B through the use of distributed reinforcement learning combined with an innovative strategy that incrementally expands its context window from 8,000 to 24,000 tokens during the training process. This model was developed using approximately 40,000 meticulously selected mathematical problems sourced from high-level competition datasets, including AIME (1984–2023), AMC (pre-2023), Omni-MATH, and STILL. Achieving an impressive 43.1% accuracy on the AIME 2024 exam, DeepScaleR demonstrates a significant enhancement of around 14.3 percentage points compared to its base model, and it even outperforms the proprietary O1-Preview model, which is considerably larger. Additionally, it excels on a variety of mathematical benchmarks such as MATH-500, AMC 2023, Minerva Math, and OlympiadBench, indicating that smaller, optimized models fine-tuned with reinforcement learning can rival or surpass the capabilities of larger models in complex reasoning tasks. This advancement underscores the potential of efficient modeling approaches in the realm of mathematical problem-solving.
  • 16
    GLM-4.6V Reviews
    The GLM-4.6V is an advanced, open-source multimodal vision-language model that belongs to the Z.ai (GLM-V) family, specifically engineered for tasks involving reasoning, perception, and action. It is available in two configurations: a comprehensive version with 106 billion parameters suitable for cloud environments or high-performance computing clusters, and a streamlined “Flash” variant featuring 9 billion parameters, which is tailored for local implementation or scenarios requiring low latency. With a remarkable native context window that accommodates up to 128,000 tokens during its training phase, GLM-4.6V can effectively manage extensive documents or multimodal data inputs. One of its standout features is the built-in Function Calling capability, allowing the model to accept various forms of visual media — such as images, screenshots, and documents — as inputs directly, eliminating the need for manual text conversion. This functionality not only facilitates reasoning about the visual content but also enables the model to initiate tool calls, effectively merging visual perception with actionable results. The versatility of GLM-4.6V opens the door to a wide array of applications, including the generation of interleaved image-and-text content, which can seamlessly integrate document comprehension with text summarization or the creation of responses that include image annotations, thereby greatly enhancing user interaction and output quality.
  • 17
    GLM-4.1V Reviews
    GLM-4.1V is an advanced vision-language model that offers a robust and streamlined multimodal capability for reasoning and understanding across various forms of media, including images, text, and documents. The 9-billion-parameter version, known as GLM-4.1V-9B-Thinking, is developed on the foundation of GLM-4-9B and has been improved through a unique training approach that employs Reinforcement Learning with Curriculum Sampling (RLCS). This model accommodates a context window of 64k tokens and can process high-resolution inputs, supporting images up to 4K resolution with any aspect ratio, which allows it to tackle intricate tasks such as optical character recognition, image captioning, chart and document parsing, video analysis, scene comprehension, and GUI-agent workflows, including the interpretation of screenshots and recognition of UI elements. In benchmark tests conducted at the 10 B-parameter scale, GLM-4.1V-9B-Thinking demonstrated exceptional capabilities, achieving the highest performance on 23 out of 28 evaluated tasks. Its advancements signify a substantial leap forward in the integration of visual and textual data, setting a new standard for multimodal models in various applications.
  • 18
    GLM-4.5V-Flash Reviews
    GLM-4.5V-Flash is a vision-language model that is open source and specifically crafted to integrate robust multimodal functionalities into a compact and easily deployable framework. It accommodates various types of inputs including images, videos, documents, and graphical user interfaces, facilitating a range of tasks such as understanding scenes, parsing charts and documents, reading screens, and analyzing multiple images. In contrast to its larger counterparts, GLM-4.5V-Flash maintains a smaller footprint while still embodying essential visual language model features such as visual reasoning, video comprehension, handling GUI tasks, and parsing complex documents. This model can be utilized within “GUI agent” workflows, allowing it to interpret screenshots or desktop captures, identify icons or UI components, and assist with both automated desktop and web tasks. While it may not achieve the performance enhancements seen in the largest models, GLM-4.5V-Flash is highly adaptable for practical multimodal applications where efficiency, reduced resource requirements, and extensive modality support are key considerations. Its design ensures that users can harness powerful functionalities without sacrificing speed or accessibility.
  • 19
    GLM-4.5V Reviews
    GLM-4.5V is an evolution of the GLM-4.5-Air model, incorporating a Mixture-of-Experts (MoE) framework that boasts a remarkable total of 106 billion parameters, with 12 billion specifically dedicated to activation. This model stands out by delivering top-tier performance among open-source vision-language models (VLMs) of comparable scale, demonstrating exceptional capabilities across 42 public benchmarks in diverse contexts such as images, videos, documents, and GUI interactions. It offers an extensive array of multimodal functionalities, encompassing image reasoning tasks like scene understanding, spatial recognition, and multi-image analysis, alongside video comprehension tasks that include segmentation and event recognition. Furthermore, it excels in parsing complex charts and lengthy documents, facilitating GUI-agent workflows through tasks like screen reading and desktop automation, while also providing accurate visual grounding by locating objects and generating bounding boxes. Additionally, the introduction of a "Thinking Mode" switch enhances user experience by allowing the selection of either rapid responses or more thoughtful reasoning based on the situation at hand. This innovative feature makes GLM-4.5V not only versatile but also adaptable to various user needs.
  • 20
    ESMFold Reviews
    ESMFold demonstrates how artificial intelligence can equip us with innovative instruments to explore the natural world, akin to the way the microscope revolutionized our perception by allowing us to observe the minute details of life. Through AI, we can gain a fresh perspective on the vast array of biological diversity, enhancing our comprehension of life sciences. A significant portion of AI research has been dedicated to enabling machines to interpret the world in a manner reminiscent of human understanding. However, the complex language of proteins remains largely inaccessible to humans and has proven challenging for even the most advanced computational systems. Nevertheless, AI holds the promise of unlocking this intricate language, facilitating our grasp of biological processes. Exploring AI within the realm of biology not only enriches our understanding of life sciences but also sheds light on the broader implications of artificial intelligence itself. Our research highlights the interconnectedness of various fields: the large language models powering advancements in machine translation, natural language processing, speech recognition, and image synthesis also possess the capability to assimilate profound insights about biological systems. This cross-disciplinary approach could pave the way for unprecedented discoveries in both AI and biology.
  • 21
    XLNet Reviews
    XLNet introduces an innovative approach to unsupervised language representation learning by utilizing a unique generalized permutation language modeling objective. Furthermore, it leverages the Transformer-XL architecture, which proves to be highly effective in handling language tasks that require processing of extended contexts. As a result, XLNet sets new benchmarks with its state-of-the-art (SOTA) performance across multiple downstream language applications, such as question answering, natural language inference, sentiment analysis, and document ranking. This makes XLNet a significant advancement in the field of natural language processing.
  • 22
    CodeGen Reviews

    CodeGen

    Salesforce

    Free
    CodeGen is an open-source framework designed for generating code through program synthesis, utilizing TPU-v4 for its training. It stands out as a strong contender against OpenAI Codex in the realm of code generation solutions.
  • 23
    StarCoder Reviews
    StarCoder and StarCoderBase represent advanced Large Language Models specifically designed for code, developed using openly licensed data from GitHub, which encompasses over 80 programming languages, Git commits, GitHub issues, and Jupyter notebooks. In a manner akin to LLaMA, we constructed a model with approximately 15 billion parameters trained on a staggering 1 trillion tokens. Furthermore, we tailored the StarCoderBase model with 35 billion Python tokens, leading to the creation of what we now refer to as StarCoder. Our evaluations indicated that StarCoderBase surpasses other existing open Code LLMs when tested against popular programming benchmarks and performs on par with or even exceeds proprietary models like code-cushman-001 from OpenAI, the original Codex model that fueled early iterations of GitHub Copilot. With an impressive context length exceeding 8,000 tokens, the StarCoder models possess the capability to handle more information than any other open LLM, thus paving the way for a variety of innovative applications. This versatility is highlighted by our ability to prompt the StarCoder models through a sequence of dialogues, effectively transforming them into dynamic technical assistants that can provide support in diverse programming tasks.
  • 24
    Llama 2 Reviews
    Introducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively.
  • 25
    Code Llama Reviews
    Code Llama is an advanced language model designed to generate code through text prompts, distinguishing itself as a leading tool among publicly accessible models for coding tasks. This innovative model not only streamlines workflows for existing developers but also aids beginners in overcoming challenges associated with learning to code. Its versatility positions Code Llama as both a valuable productivity enhancer and an educational resource, assisting programmers in creating more robust and well-documented software solutions. Additionally, users can generate both code and natural language explanations by providing either type of prompt, making it an adaptable tool for various programming needs. Available for free for both research and commercial applications, Code Llama is built upon Llama 2 architecture and comes in three distinct versions: the foundational Code Llama model, Code Llama - Python which is tailored specifically for Python programming, and Code Llama - Instruct, optimized for comprehending and executing natural language directives effectively.