RagMetrics serves as a robust evaluation and trust platform for conversational GenAI, aimed at measuring the performance of AI chatbots, agents, and RAG systems both prior to and following their deployment. It offers ongoing assessments of AI-generated responses, focusing on factors such as accuracy, relevance, hallucination occurrences, reasoning quality, and the behavior of tools utilized in real interactions.
The platform seamlessly integrates with current AI infrastructures, enabling it to monitor live conversations without interrupting the user experience. With features like automated scoring, customizable metrics, and in-depth diagnostics, it clarifies the reasons behind any failures in AI responses and provides solutions for improvement. Users can conduct offline evaluations, A/B testing, and regression testing, while also observing performance trends in real-time through comprehensive dashboards and alerts.
RagMetrics is versatile, being both model-agnostic and deployment-agnostic, which allows it to support a variety of language models, retrieval systems, and agent frameworks. This adaptability ensures that teams can rely on RagMetrics to enhance the effectiveness of their conversational AI solutions across diverse environments.