Open Coding Agents represent a suite of fully open, high-performance AI coding models along with a training methodology introduced by the Allen Institute for AI, designed to simplify the process of creating, customizing, and training coding agents across various repositories in an accessible, cost-effective, and transparent manner; this platform encompasses models, code, training recipes, and tools that can be activated with minimal configuration, allowing users to adapt agents to their specific codebases and engineering practices for a variety of tasks including code generation, code review, debugging, maintenance, and code explanation. By departing from conventional closed and costly systems, these agents provide an open pipeline that extends from models to training data, facilitating fine-tuning on internal code, which helps agents learn about organization-specific APIs, patterns, and workflows; the inaugural release, SERA (Soft-verified Efficient Repository Agents), sets a new standard in coding benchmarks while maintaining a significantly lower compute cost than typical solutions, showcasing the potential for innovation in the field of AI-driven coding. As the landscape of coding becomes increasingly complex, the introduction of such models promises to democratize access to advanced coding assistance, paving the way for a more efficient development process.